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Abstract Methods based on geostatistics were applied to 
quantitative traits of agricultural interest measured on a 
collection of 547 wild populations of perennial ryegrass in 
France. The mathematical background of these methods, 
which resembles spatial autocorrelation analysis, is briefly 
described. When a single variable is studied, the spatial struc- 
ture analysis is similar to spatial autocorrelation analysis, and 
a spatial prediction method, called "kriging", gives a filtered 
map of the spatial pattern over all the sampled area. When 
complex interactions of agronomic traits with different evalu- 
ation sites define a multivariate structure for the spatial 
analysis, geostatistical methods allow the spatial variations to 
be broken down into two main spatial structures with ranges 
of 120 km and 300 km, respectively. The predicted maps that 
corresponded to each range were interpreted as a result of the 
isolation-by-distance model and as a consequence of selection 
by environmental factors. Practical collecting methodology 
for breeders may be derived from such spatial structures. 

Key words Perennial ryegrass �9 Population genetics �9 Geo- 
statistics �9 Spatial autocorrelation 

Introduction 

In nature many phenomena show variations that are not 
randomly distributed in space but are spatially arranged or 
structured. Examples of these are common in the earth 
sciences. Geologists were the first to develop statistical 
methods, called geostatistics, adapted to this kind of variable 
(Matheron 1965). Geostatistical analysis, as simply described 
in Webster and Oliver (1990) consists of two main steps: 
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- modeling and identification of the spatial structure of 
the variable using variograms or spatial covariance 
functions. 

- linear estimation or prediction of the variable every- 
where in the studied space to obtain a cartography. This 
spatial prediction method, called "kriging", also gives a 
map of prediction variance. More complete technical 
descriptions of the methods and recent developments in 
geostatistics may be found in Journel and Huijbregets 
(1978) and in Cressie (1986, 1991). 

Sokal and Oden (1978a, b) introduced similar approaches 
in biology, an example being the spatial autocorrelation 
analysis. In the field of population biology or evolution 
science, spatial autocorrelations may have different origins: 

- a trait may be differentiated in response to an environ- 
mental gradient, leading to a clinal variation. 

- in the same way, if environmental conditions vary patch- 
ily, such patches may also be found in the spatial dis- 
tribution of adaptative traits. 

- for selectively neutral traits, such as the alMic frequen- 
cies of isozymes, a limited gene flow, founder effects and 
isolation-by-distance generally lead to a decrease of 
genetic identity with distance between populations; 
Sokal and Wartenberg (1983) even demonstrated that a 
few generations of isolation allow a spatial structure of 
allelic frequency to be created. 

Spatial structure analysis has been extensively applied in 
biology, mostly through the use of the spatial autocorrelation 
method (Sokal and Oden 1978a, b). This method leads to a 
graphic representation of a coefficient of genetic identity as a 
function of geographical distance either between individuals 
within a population or between populations. It has been 
applied to both morphological traits (Epperson and Clegg 
1986) and to allelic frequencies of isozymes (Waser 1987; 
Dewey and Heywood 1988; Epperson and Allard 1989; Perry 
and Knowles 1991). 

Other theoretical (Barbujani 1987) or simulation studies 
(Sokal et al. 1989; Epperson 1990) have been devoted to the 
problem of spatial structuring in population genetics. 
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In the study reported here geostatistical methods were 
applied to quantitative traits of agricultural interest measured 
on a collection of 547 wild populations of perennial ryegrass 
from France. Adaptative traits like seasonal growth or repro- 
ductive characteristics are not uniformly distributed over 
space. The aim of our study was to determine the parameters 
of this underlying spatial structure and to deduce some of its 
implications in the spatial distributions of the ryegrass popu- 
lations. 

Materials and methods 

Materials and experimental design 

Seed samples of wild populations of perennial ryegrass were collected in 
France during the summers of 1983 and 1984. The framework was a 
cooperative program between private companies and INRA. Details of 
the collection design and evaluation procedure have been described in 
Charmet et al. (1990). Briefly, 226 populations were studied from 1984 to 
1986 and another 321 populations from 1985 to 1987. All were evaluated 
in spaced plant nurseries, with three replicated blocks of 10 plants of every 
population at each of the six evaluation sites (Fig. 1). Ten traits of 
agricultural interest were scored on a single plant basis according to a 1-9 
visual scale, except for heading date, which was scored in days from 
January 1st. 

Since the empirical distributions of most traits fit the Gaussian 
distribution quite well, a variance analysis was performed on the original 
variables using the following model with fixed effects. 

X = I~ + Y E  + LO + YE .LO + Y E . L O . B L  + PO + LO.PO + e (1) 

where p is the overall mean, Y E  the main year effect, LO the main 
evaluation site location effect, YE.LO the year x evaluation site interac- 
tion, Y E . L O . B L  the block effect (hierarchized in year and evaluation site 
location), PO the main population effect, LO.PO the evaluation 
site x population interaction and ~ the residual error (i.e., mostly intra- 
population error). 

The results of these analyses are described in Charmet et al. (1990). 
Most factors are highly significant. However, the variation associated 
with population main effect and population x evaluation site interaction 
is used to separate the traits associated with reproductive development 

Fig. 1 Map of the evaluation sites. L1 Rodez, L2 Mont-de-Marsan, L3 
Angers, L9 Clermont-Ferrand, LIO Bourg-Lastic, L l i  le Pin-au-Haras 
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from the growth or susceptibility traits. The first group generally has high 
ratios of main population effect over population x evaluation site interac- 
tion variation, and therefore interactions may be neglected. The second 
group shows higher degrees of interaction, which cannot be discarded in 
further analysis. 

In this methodology-oriented paper, the use of geostatistics on one 
trait of each category is illustrated: heading date as an example of a 
"stable" trait and summer growth as an example of "interactive" one. 
Although summer growth does not have the lowest ratio of population 
effect/interaction, it was chosen because its variation is thought to be 
related to adaptative characteristics such as summer dormancy, and thus, 
to have a more pronounced spatial structure in relation to ecological 
factors. 

Univariate geostatistical methods 

Stochastic modelling is used to describe the spatial data. Suppose that the 
studied valSable is a realization of a random field and that the observed 
data are a spatial sample on some sites of this realization. Let X(y) denote 
the random field at location y. The data are given by the X (  yi)'s where the 
yi's, for i = 1, . . . ,  n, denote the location of the n sampled sites. 

In order to carry out estimation from a single realization of the 
random field, the stationarity of order two is assumed, i.e., the first two 
moments are supposed to be invariant by translation. In mathematical 
terms, we have: 

E [X(y)] = m where m is independent o fy  (2) 

E [(X(y 4- h) - m)(X(y)  - m)] = C(h) (3) 

E [(X(y + h) - X(y)) 2] = G(h) (4) 

Equations 3 and 4, where y + h is the translation of y and E denotes the 
expectation, define the covariance function C(h) and the variogram G(h) 
respectively. The two expectations depend only on the vector h. If the 
distribution is Gaussian, these two functions and the mean m give a 
complete characterization of the random field. Also, it follows directly 
that: 

G(h) = C(O) - C(h) = o -z - C(h) (5) 

To describe the spatial distribution of the variable, one of the two 
functions is estimated from the set of data. For example, the variogram 
may be estimated by: 

g*(h) = ~(h)  ~ l  w(yl  - Yl, h)(x(yi)  - x(y,)) 2 (6) 

with W(h) = ~ w(y i - Yl, h) 
i<l  

where w(u, h) is a function of the proximity between h and u. For example 
w(u, h) = 1 if the distance between h and u is less than some a; otherwise, it 
is zero. For the isotropic case, h is just replaced by d and w is a function 
both of d and the distance between the two points. The properties of the 
estimator are given in the Gaussian case in Journel and Huijbregts (1978). 
Note that g*(h) is an unbiased estimate of G(h) even if m is unknown. 

Structural analysis consists in describing and modeling the estimated 
variogram 9* (h). Variograms are characteristic of the relations of depend- 
ence existing between sites. Classically, three different items are described 
by such functions: 

First, the discontinuity at the origin. The variogram equals zero at 
the origin by definition. For a distance close to zero, a significant 
value usually called "nugget effect" is often observed. This initial 
variance can be seen as measurement error and microscale vari- 
ation. 

- Second, the variogram usually increases with increasing distances. 
The shorter the distances between the sites, the more dependent the 
observations. 

- Third, the "sill" is the steady value reached by the function. When 
the distance between sites is larger than a certain value, the vari- 
ogram function becomes constant and the sites should be consider- 
ed to be independent. This distance value, called the range, is an 
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essential parameter in spatial description. The value of the sill is 
close to that of the global population variance. When the distance 
values are highest, random fluctuations may appear on the es- 
timated variogram because the accuracy in the estimation is at its 
lowest. 

The modelling of the variogram leads to the second phase, which 
consists of the spatial prediction or spatial interpolation - of the vari- 
able between the observed sites. Suppose we want to estimate the value 
X(yo)  of the random field at a site Yo- Let our estimate be a linear 
expression - or a weighted average - of the observed values: 

n 

x~  = F. ;~#(y,), (7) 
i - 1  

where the 2~ are coefficients or weights chosen so that the error of 
prediction is minimal. The weights take into account the known spatial 
dependences expressed in the variogram G(h) and the geometric relation- 
ships among the observed sites. This prediction, known as "kriging", is the 
best linear unbiased prediction based on the observed values. 

Multivariate spatial analysis 

It is assumed here that a data table was assembled such that the rows 
represent populations collected over the 547 sites and the columns the 
observations of a variable at the six evaluation sites. For example, the 
observations of "summer growth" in the six evaluation sites are conside- 
red to be six different variables. Each variable under study is taken as a 
realization of some random field. These random fields are denoted by 
X J , j  = 1 . . . . .  p, where p is the number of observed variables. X-i(y), the 
value of the random field at site of coordinates y, is a random variable. 
Each realization is a surface that is only partially sampled at n sites, the 
value of the random variables being XJ(yi) ,  i = 1 . . . . .  n. When the random 
fields are grouped into a vector, where each component is a random field, 
and if it is assumed that this vector random field is stationary up to the 
second order, then: 

V [X~(y)] = rn j with m ~ independent of y (8) 

E [(XJ(y + h) - m j) (Xk(y )  -- mk)] = c~k(h) (9) 

E [(XJ(y + h) --  XJ (  y) ) ( X k ( y  + h) - Xk(y))] = Gig(h) (10) 

The last two expectations depend only on the vector h, where y + h is the 
translation of y. C jk is called the cross-covariance function and G jk is the 
cross-variogram. When j = k, the two functions are the covariance and 
variogram functions, respectively, introduced in the previous section. As 
in one dimension, they tell us about the multidimensional spatial struc- 
ture. It may be noted that the equality: 

GJJ(h) = C~(O) --  CJJ(h) (1 l) 

is not true for j  r k because: 

c/k(h)  = cSk(o) -- l ( cJk(h) + cSk( --  h)) (12) 

Moreover, the cross-variogram may exist when the cross-covariance 
does not exist. From now on, only the cross-variogram will be used even if 
it means limiting the observations to symmetrical relationships. When the 
dependence relation is isotropic, the cross-variogram depends on the 
distance d between y and y + h. 

The cross-variograms can be used to obtain the spatial relationships. 
They can be estimated by: 

gJk(h) = W@h) ~ w(yl - y ' '  h)(xJ(yl) - xJ(y,)) (xk(yi) -- xk(y,)) (13) 

where w(u,  h) and W (h)  are defined as in Eq. 6. The structural analysis of 
this cross-variogram is more difficult to perform than in the one-dimen- 
sional case because of the number of estimated curves to interpret 
simultaneously. 

A model of the cross-variograms seems to be a convenient manner by 
which to summarize the multivariate spatial dependences. This model 

must satisfy some strong constraints in order to be a cross-variogram 
model. The linear coregionalization model for which 

G~ = s{kg l (h )  + . . .  + S~kg,(h) (14) 

where the functions g~ are variograms and the matrices S t of elements S/k 
are positive definite, is an adequate model that is often used in soil science 
(Goulard and Voltz 1992; Wackernagel 1988). The basic physical idea is 
that the variables under study are generated by different processes acting 
additively with various specific spatial structures. The matrices tell us 
about the relationships between variables for the specific underlying 
processes. The variogram function gt can be chosen from the physical 
model of the phenomenon or by inspection of the behaviour of the 
variograms. The fit of the model is then done by a least-squares procedure. 
Afterwards, each matrix is analyzed as a variance-covariance matrix of 
variables. 

As for the one-dimensional case, the cross-variograms lead to cokrig- 
ing, which is the multivariate version of kriging. One component of the 
vector random field is predicted at a location using the observed values of 
all components at observed sites. If it is assumed that the component X j 
forj  = 1,... ,p at sites y~ for i = 1,. . . ,  nj is known, cokriging a component 
X z at site Yo consists in searching for the best unbiased linear estimator: 

X'(yo)*= ~ ~ 2,jX~(yl) (15) 
j - l i - 1  

The scalars )~i~ are chosen so that they satisfy specific linear constraints, so 
that the prediction is unbiased and the variance of prediction error 
minimal. 

The model may also be viewed as a decomposition of each variable 
under study on r sp6cific multivariate spatial structures. The structures are 
themselves decomposed on p spatial components, which are all mutually 
independent: 

r i A, Z, (y) (16) 
t = l k = l  

where the Z~ independent random fields are obtained by using a special 
case of cokriging (Goulard and Voltz 1992) and the A~ k matrices result 
from a decomposition of the covariance matrix S/k in factors. 

S Jk ~ al = At Atk~ (17) 
/ = 1  

The factors are worked out using an inertia criterion as in principal 
component analysis. An effective summary of the multivariate covariance 
structure is to describe the two or three main spatial components that are 
associated to the factors with larger inertia. A map can be obtained for 
every spatial component Z, k related to each factor or at least to the 
principal ones. This has been called in geostatistics the kriging analysis. 

As in principal component analysis, the relationship between original 
variables and spatial components can be described for each spatial 
structure of variogram g, using the correlation circle in the first two 
principal-factor planes. 

Results 

V a r i a n c e  ana l y s i s  a n d  y e a r  i n t e r a c t i o n  

S ince  t h e  s a m p l e s  o f  p o p u l a t i o n s  s t u d i e d  in 1 9 8 4 - 1 9 8 6  a n d  

1 9 8 5 - 1 9 8 7  re spec t ive ly ,  a re  n o t  r a n d o m l y  l o c a t e d ,  t h e  y e a r  

effect  a n d  all i n t e r a c t i o n s  w i t h  y e a r  m a y  p r o d u c e  a spa t i a l  

s t r u c t u r e  t h a t  is ar t i f icial .  

S u c h  a s t r u c t u r e  w o u l d  h a v e  s h o w n  d i s c r e p a n c i e s  b e t w e e n  

p r e d i c t e d  p o p u l a t i o n  m e a n s  a c r o s s  t h e  l imi t s  o f  t h e  t w o  se ts  o f  

s a m p l e s  ( b o r d e r  effect). T h i s  c a n  be  seen  o f  F ig .  2a  w h e r e  t he  

s y m b o l  s izes a r e  p r o p o r t i o n a l  to  o n  t h e  m e a n  va lues  o f  

s u m m e r  g r o w t h  a t  t h e  e v a l u a t i o n  si te R o d e z  L1 (i.e., t h e  w h o l e  

m o d e l  o f  Eq .  1 e s t i m a t e d  fo r  L O  = 1) fo r  t h e  s a m p l e s  s o w n  in  

1984 ( e m p t y  squa re s )  a n d  1985 (fil led squa re s ) ,  r e spec t ive ly :  
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the former has on average greater values of summer growth 
score, and a marked border effect can be observed. This effect 
appears to be fully corrected for on Fig. 2b, which presents the 
estimates # + PO + LO.PO from the analysis of variance of 
summer growth for LO = 1 (Rodez). 

To verify that the year correction does not add any artifi- 
cial spatial structure, the kriging analysis was carried out on 
the data obtained from the 1984 and 1985 nurseries, consider- 
ing only pairs of population sites from within a common 
evaluation test. All of the results were similar to those ob- 
tained from the full pair set: considering pairs of populations 
with a different evaluation time did not alter the spatial 
structures. The correction of year effect through the analysis of 
variance can thus be considered as being appropriate for the 
following spatial analyses. 

For  heading date the LO. PO interaction is not significant 
and pooled with the error so the correction of year effect, 
which was done by estimation of # + PO, seems also to be 
satisfactory, as shown in Fig. 2c. in order to take into account 
the correction for year main effects and interaction effects 
involving year, we used the estimated effects # + PO (for 
heading date) and # + PO + L O . P O  (for summer growth) in 
the geostatistical analyses. 

Spatial analysis of heading date 

Because of the absence of evaluation site x population inter- 
action, the population means can be analysed as an univariate 
spatial random field. Isotropy of the random field is assumed. 
The empirical variogram is presented in Fig. 3. In accordance 
with Eq. 6, the estimation of 9*(h) has been performed for a 
series of h regularly spaced every 10 km and for a function 
w(u, h); which equals 1 when the discrepancy between u and h 
is lower than 5 km and 0 elsewhere. 

A spherical model with a nugget effect was fitted to the 
empirical variogram: 

3 h 1( h ~3) + 3 2 . ( ~ - ~ t 1 ~  J 
h - ) (18) 

9( ) - -  10. if h < 1 2 0  

42. if h _> 120 
% 

where the nugget effect, i.e., the variance of the difference 
between adjacent populations (h = 0), equals 10 and where the 
range of the variogram is 120 km. The nugget effect represents 
the lower limit of the variance of heading date difference 
between adjacent populations. This variance is only 10 (i.e., a 
standard deviation of 3.2 days), about 25% of the variance of 
difference between samples that are more than 120 km apart. 

The use of the fitted variogram allows the variable heading 
date to be interpolated everywhere by kriging, and then a map 
with curves ofisovalue can be obtained from the sampled sites. 
The method filters the nugget effect term and shows only 

Fig. 2 a Map of "summer growth" measured at evaluation site L1 for 
547 collected populations. Markers are located at collection sites�9 Marker 
size is proportional to the variable. Populations evaluated in 1984 are 
depicted by empty squares and populations evaluated in 1985 by filled 
squares, b Map of "summer growth" after correction of the year effect. 
e Map of"heading date" averaged over the evaluation sites after correc- 
tion of the year effect 
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smoother spatial variations with a range of 120 kin. The 
resulting map in Fig. 4 has to be compared with the primary 
data map of Fig. 2c. The two maps feature similar spatial 
variations, but local erratic variations have been removed 
from the kriged one. There is no obvious simple relation 
between the spatial variation of Fig. 4 and known climatic 
or environmental factors. The only pattern that may be 
interpreted is a North-South trend corresponding to a very 
long range variation not modeled by the variogram, but 
whose interpretation might be a climatic adaptation of popu- 
lation. This must not be confused with a direct climatic effect 
because all heading dates were measured at the same set of 
evaluation sites and there is no significant LO.  PO interaction. 

Spatial analysis of summer growth 

The variable "summer growth" is characterized by six vari- 
ables L1-3 and L9-11, one for each evaluation site. Each 
variable represents the estimated effect/1 + PO + L O . P O  from 
model 1. The variable maps (not shown except for L1 in Fig. 
2b) show significant spatial patterns with many variations 
from one map to another, so a multivariate geostatistical 
approach is used. Figure 5 displays the variograms of the six 
variables as well as the cross-variograms for every pair of 
variables. Isotropy of all the variables is assumed, so isotropic 
variograms and cross-variograms are employed. On this dis- 
play the functions plotted are normalized using inverse vari- 
ance of variables [i.e., Gij(h ) is transformed to Gij(h)/(giaj)]. 

If we leave out the nugget effect, two kinds of spatial struc- 
tures appear for summer growth in evaluation site variograms 
(diagonal plots), one with the 120-km range and the second 
with a 300-km range. The two structures seem to be additively 
mixed in various proportions depending on the evaluation 
sites. Most of the cross-variograms are quite flat (non-diag- 
onal plots). Some cross-variograms, however, show significant 
interrelationships for distant pairs of populations, with also a 
maximum reached for distances of 120 km or 300kin. 

The presence of significant covariances between spatial 
structures estimated from different evaluation sites requires a 

Fig. 4 Interpolated map resulting from the kriging of "heading date" 

global fitting to be carried out on the whole set of empirical 
cross-variograms. A simple model was chosen with three 
additive spatial structures: a structured one that is a spherical 
model with a 120-km range, a second spherical model with a 
300-km range and another that is spatially erratic (nugget 
effect). The model was fitted using a least-squares method. 
Results of the global fitting are illustrated on Fig. 5 by solid 
lines in the graphics. 

In terms of variance decomposition, the parts of the two 
spherical structures are globally balanced and explain from 
40% (evaluation site L l l )  to 80% (evaluation site Lg) of the 
total variation (average 60%). The erratic term represents 
40% of the total variation (Fig. 6). Subsequently, the decom- 
position in factors of the two spatial structures and the nugget 
effect, using a principal component analysis carried out on 
each S~, was performed. Each spatial structure observed from 
six evaluation sites may be summarized by a smaller number 
of factors. 

Figure 7 shows for each structure, i.e., 120 km, 300 km and 
erratic term, the relative contributions of the original vari- 
ables, L l - 3  and L g - l l ,  to the first two factors. As for a 
principal component analysis, correlations between factors 
and variables are plotted inside a unit circle in the first 
factorial plane. The information contained in the whole scat- 
ter plot of Fig. 5 is summarized in these correlation plots. For 
example, the variables L9 and L10 are independent on the 
300-km-range structure (orthogonal vector on the 300-km 
correlation plot) and positively correlated on the 120-km- 
range structure (acute angle between vectors). This is to 
represent that cross-variogram L9-L10 mainly features a 
positive dependence of the 120-km range, although both 
variograms L9 and L 10 feature a 300-km-range structure. One 
can also note that variables L1-L2 are negatively correlated 
on the 120-kin-range structure (vector in opposition) and 
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positively correlated on the 300-km-range structure. This 
second correlation tends to compensate the first one for 
increasing distance. 

For  the 120-km-range structure, the first two factors seem 
to be adequate to represent the main part of the variance 
(75%). The first one is related to the opposition between 
evaluation sites L1 -L2  and the second between evaluation 
sites L10-L3. For  the 300-km-range structure, the first factor 
collects the same part of variance and may be sufficient to 

L l l  
,2  , 2  " - " " , ' ,  . - ' ,  " - ~ ' , " .  

, . -  ~ 1 7 6  

�9 , - " "  . d . . . 

0 200 400 0 200 400 0 200 400 

Fig. 5 Vafiograms (diagonal plots) and cross-variograms (non-diagonal 
plots) of the six variables "summer growth" evaluated at sites L1-3 and 
L9-11. The functions are normalized using an inverse variance of vari- 
able. Dots represent empirical values and solid lines the fitted coregionaliz- 
ation model. Distance unit on X axis is kilometers 

summarize this spatial structure. If the nugget effect is con- 
sidered, the percentage of variance decreases slowly along the 
six factors, which is characteristic of an absence of multivari- 
ate structure. We can assume that all of the nugget effects at 
the six evaluation sites are independent and cannot be sum- 
marized by one or two factors. 

As explained before, spatial components related to factors 
of the principal component analysis can be mapped using 
cokriging. This was done for components related to the first 
two factors of the 120-kin-range structure and for the first 
factor of the 300-km-range structure. Corresponding maps are 
shown in Fig. 8a-c. In order to illustrate a component of the 
nugget effect, the first one was mapped on ryegrass collection 
sites in Fig. 8d. In this late case, a smoothed continuous map is 
not possible because interpolation of the erratic term is mean- 
ingless. The first two maps reinforce the interpretation of the 
spherical structure of the 120-km range as easily distinguish- 
able patches. The map of the spherical structure of the 300-km 
range features spatial variations that are related to a spatial 
division in homogeneous climatic regions. The map of the 
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120-km-range structure 300-km-range structure erratic structure 

axe1 2 3 4 5 6 axe1 2 3 4 5 6 axe1 2 3 4 5 6 

relative contributions relative contributions relative contributions 

L1 L2 L3 L9 LIO L l l  L1 L2 L3 L9 LIO L l l  L1 L2 L3 L9 L10 L l l  

L1 L2 L3 L9 LIO L l l  L1 L2 L3 L9 L~O L l l  L1 L2 L3 L9 10 L l l  

first axis first axis first axis 

nugget effect cannot be interpreted from a spatial point of view 
because variations come from experimental errors and very 
local interactions between collection site and test site. Any 
other test site should give another independent component for 
the multivariable nugget effect. 

Fig. 7 Factorial decomposition of the variation of each spatial structure. 
Left 120-kin-range structure, middle 300-kin-range structure, right erratic 
spatial structure. Upper Inertia of the principal components and then 
relative contributions of the variables to the first two axes, lower correla- 
tion plots on the first-two-factor plane 

Discussion 

Clear spatial patterns of variation have been found for the two 
analysed variables: a single structure with a 120-km-range for 
heading date and a more complex one for summer growth 
with two spatial structures of 120-km and 300-kin range. 

The value of the range of the variogram is equivalent to the 
value of the distance showing the first zero value in autocor- 
relation analysis. This value was interpreted by S okal (1979) as 
indicating the path size; i.e., the diameter of homogeneous area 
in the surface of the variable studied. Such homogeneous areas 
whose size fit the range of the variogram can be observed in 
Figs. 4 and 8. 

To explain homogeneous patches two hypotheses have been 
proposed by Sokal (1979, 1986) and Sokal and Jacquez (1991). 

1) Selection: If the variable under study is affected by a 
selection pressure of environmental origin, then the patches of 
the variable surface will reflect the patches of this environ- 
mental factor. Although difficult to prove without additional 
experimental evidence, this hypothesis may be suspected 
whenever the map of the variable resembles that of any 
environmental f ac to r - fo r  example, temperature or rain- 
fall - that may be candidate for a selective agent. 

2) Isolation-by-distance: This is caused by restricted 
gene flow and is the main force tending to produce homo- 
geneity of allelic frequency and, therefore, homogeneity of 
any genetically controlled trait, including the quantitative, 
polygenic ones. Gene flow in plant populations is mainly 
due to seed and pollen transport. Consequently, the average 
diameter of ge-netically homogeneous patches is partly 
determined by the average lifetime migration distance 
(Sokal 1979, 1986). Since this migration distance is the same 
for all genes, variograms of all variables are expected to 
be similar, as has been demonstrated in a simulation study 
by Sokal and Wartenberg (1983). However, their surface 
patterns are likely to be globally uncorrelated, since the 
initial allelic frequencies are entirely due to stochastic events 
or, possibly, to local microenvironmental selection. A com- 
mon diffusion pattern will thus lead to different, uncorrelated 
maps for different variables, which, however, will bear a 
similar spatial structure. 

The erratic component (nugget effect) may cover several 
sources of variation: (1) an experimental error sensu stricto 
caused, for instance, by uncontrolled field heterogeneity or 
unadequate eye assessment; (2) spatial variations on a scale 
below that of the study (selection pressure caused by microen- 
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vironmental factors could particularly be incriminated) 
(3) a temporary "white noise" caused by stochastic events 
such as genetic drift caused by population bottleneck, extinc- 
tion or colonization events, which may remain visible before 
gene flow between populations smooths allelic frequency 
differences. 

Interpretation of the ryegrass population spatial 
structure 

Using this theoretical background and reviewing the results of 
the geostatistical methods, we are able to formulate interesting 
interpretations on the case study. Briefly, one can deduce that 
the spatial structure of the 120-km range results from the gene 
flow, while the spatial structure of the 300-km range is caused 
by selection. The erratic component reflects more locally 
restricted variations and experimental errors. 

As a matter of fact, the 120-km-range structure has been 
found in all of the variables analyzed: mean heading date and 

Fig. 8 a Map of the first component of the 120-km-range structure, b 
map of the second component of the 120-km-range structure, e map of the 
first component of the 300-kin-range structure, d map of the first compo- 
nent of the erratic spatial structure 

summer growth at most evaluation sites, and is even clear on 
some cross-variograms. This structure, which is the only one 
for heading date, overlaps with a 300-km-range spatial struc- 
ture for summer growth. The kriging analysis has been power- 
ful in separating the two structures. The comparison of kriged 
maps of heading date and the cokriged maps of the first two 
principal components of the 120-kin-range structure of sum- 
mer growth allows us to completely discard the selection 
hypothesis, since these three maps are uncorrelated and no 
association with any environmental factor is obvious. With 
the conclusion of isolation-by-distance cause for the 120-kin 
structure, the first two corresponding components of summer 
growth, which are logically independent from each other, 
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might correspond to different gene pools. Each pool  governs a 
part icular  adapta t ion  to drought  condit ions but  has the same 
spatial  diffusion pattern. 

Since the patch size associated to gene flow is unique,the 
selection hypothesis must  be put  forward to explain the 300- 
km-range structure of summer growth. Indeed, the map  of the 
first principal  component  of this structure shows clear relation 
ships with maps of climatic factors such as summer water 
deficit (Bessemoulin 1969), which are very likely to exert a 
selection pressure on the summer growth ability of ryegrass 
populations.  

The erratic component  associated to the nugget effect may 
be a simple experimental  error. It is remarkable,  however, that 
this effect accounts for more than 50% of the variat ion at 
evaluation site L11, which is located in N o r m a n d y  and is the 
most  suitable climate for rye-grass growth in the summer. 
This is p robab ly  not  by chance: in such favorable conditions,  
the genetic adapta t ion  associated with the two spatial struc- 
tures of the 120-km and 300-km range may be "buffered", 
thereby allowing microscale variat ion to become propor-  
t ionally larger. These microscale variations may be due to 
microenvironmental  conditions,  as demonstra ted in the grass 
Anthoxanthum odoratum by Jain and Bradshaw (1966). 

The average distance of gene flow inferred from our results 
in perennial ryegrass could be compared  with other estimates 
obtained from spatial  autocorrela t ion studies in plant  popula-  
tions: Jensen (1986) found about  700 km in the oak Quercus 
elIipsoidalis, and Sokal et al. (1986b) also reported a distance 
of 600-700 km in a study of Populus dehoides in eastern USA. 
The average distance found in ryegrass is lower than that  
found in the tree species. This might be accounted for by 
differences in the sizes or shapes of the pollens, which would 
affect their dispersion ability. 

Consequences on collecting methodology for breeding 

Assuming that  observed spatial  pat terns are mixtures of 
isolat ion-by-distance processes and selection processes, 
we propose that the following points should be considered 
when collecting natural  populat ions  of ryegrass. (1) The selec- 
t ion structure has only one dimension, and a simple use of the 
map  of Fig. 8c may  help the plant  breeder to identify the 
geographic area where natural  selection has operated in the 
direction desired with regards to its breeding objectives. (2) As 
homogeneous patches of the first two components  of the 
isolat ion-by-distance structure are supposed to have indepen- 
dent gene pools, collecting populat ions  in every patch will 
ensure that  the genetic diversity is maximal.  (3) One should, 
however, keep in mind that  an erratic, unpredictable effect still 
remains. On an average, it represents 40% of the variat ion of 
summer growth. Therefore, plant  breeders should be advised 
to collect (or conserve) several populat ions in every combina-  
tion of patches (selection and gene-flow) in order  to represent 
the within-patch-component ,  possibly of microenvironmental  
origin. 

Geostat is t ic  methods have proved to be powerful in 
analysing a complex spatial  structure of several agricultural  
traits observed on a large collection of natura l  populat ions  

of perennial ryegrass. Fur ther  studies would be needed 
to confirm the hypotheses on isolation-by-distance 
patches. Geostatist ics or Spatial autocorrela t ion on neutral  
markers  such as isozyme frequencies, for example, may be 
employed. 
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